Indian J. Plant Genet. Resour. 35(3): 269–278 (2022) DOI 10.5958/0976-1926.2022.00081.X

# A1/A2 Milk Research in Indian Cattle

# Monika Sodhi\*, M Mukesh, RS Kataria, SK Niranjan and BP Mishra

ICAR-National Bureau of Animal Genetic Resources, Karnal-132001, Haryana, India

Bovine beta casein A1 and A2 are the most common variants in cattle breeds. Because of the bioactive peptide beta casomorphin-7 (BCM7) produced by raw or processed A1-milk, which has high affinity for opioid receptors and can exert regulatory activities, A1 variant is considered a risk factor for many human diseases, but not by A2-milk, during digestion. The frequency of A1/A2 allele of beta casein is breed dependent and can be very easily checked with simple PCR-RFLP technique. The aim of this article was to review the different studies and assess the status of A1/A2 in Indian native cattle breeds as well as crossbred/taurine populations and breeding bulls being used at different AI centres in India. Analysis of frequency pattern clearly indicated that all Indian native cattle breeds have high frequency of A2 allele and homozygous A2A2 genotype and hence are very good resource for A2 milk. Crossbred, taurine cattle populations and breeding bulls being used at different AI centres have a higher frequency of A2 allele and A1A2 genotype. The percentage of animals with homozygous A2A2 genotype is low. This suggests the need for screening of crossbred/exotic bulls being used in A1 and modify the existing breeding policy so as to drift the herds towards A2.

#### Introduction

Milk from a variety of livestock species and cow in particular has been included in the diet for infants, children and adults worldwide since it is the most common source of animal proteins and microelements known to be essential for human nutrition. Worldwide, the different sources of milk are cow, buffalo, goat, sheep and camel contributing 85%, 11%, 2%, 1.4% and 0.2% respectively to the total world milk production. With a herd capacity of 264 million cows contribute highest to the total milk production that is 600 million tons every year. Cow milk contains various components like lipids, proteins, amino acids, vitamins, minerals, immunoglobulins, hormones, growth factors, cytokines, nucleotides, peptides, polyamines, enzymes and other bioactive peptides with physiological functionality. It also provides a high quality source of energy, proteins and selected micronutrients such as calcium, magnesium, zinc and phosphorus to most human population. Cow milk generally contains about 3.5 % protein, of which approximately 80 % are caseins and 20 % are whey proteins. More than 95% of the cow milk proteins are constituted by caseins ( $\alpha S1$ -,  $\alpha S2$ -,  $\beta$ -, k-CN) and whey  $(\alpha$ -LA and  $\beta$ -LG) genes. Milk and milk products are considered as functional foods as digestion of different components of cow milk specially proteins lead to the formation of biologically active molecules that can have a direct and significant effect on health (Marshall 2004)

including digestive functions, metabolic responses to absorbed nutrients, growth and development of organs or different diseases.

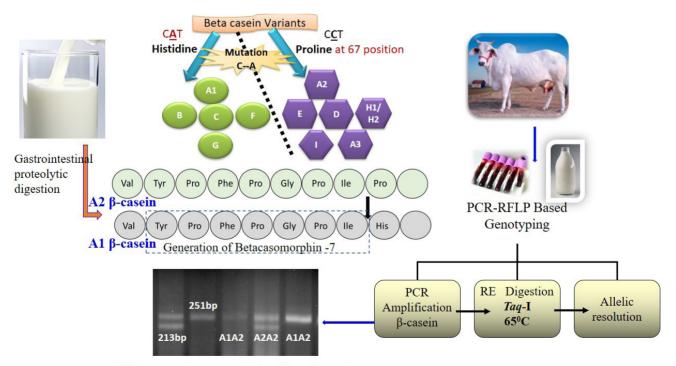
### **Beta Casein Variants**

Among the caseins, beta casein, the second most abundant protein with an excellent nutritional balance of amino acids is a rich source of such bioactive peptides. It holds special significance as the bioactive peptides may exert regulatory activities in the human beyond nutrition and also act as promoters of different physiological functions (Kostyra et al., 2004; Silva and Malcata, 2005). The bovine beta casein ( $\beta$ -CN) gene spanning over a region of 8.5 kb, has nine exons and different mutations have led to formation of 15 genetic variants (A1, A2, A3, B, C, D, E, F, G, H1, H2, I, J, K and L). These variants hold importance as digestion of  $\beta$ -casein with different variants not only result in generation of different group of active peptides (Nguyena et al., 2015), but also has an influence on milk protein composition and milkproduction traits according to its genetic polymorphism (Visker et al., 2011).

Among these variants, A1 and A2 are the most common genetic variants, with A2 being the ancestral allele/variant of the gene. These variants differ at amino acid position 67 corresponding to single nucleotide difference cytosine to adenine. β-casein allele A2 has cytosine at position 8101, codon CCT corresponding

<sup>\*</sup>Author for Correspondence: Email-Monika.Sodhi@icar.gov.in

270


to amino acid proline at position 67. In variant A1, conversion of cytosine to adenine leading to codon change from CCT to CAT replaces proline with histidine at position 67. Based on this A1/A2 variation, milk is generally referred as A1 or A2 milk. On the basis of common variation of Pro67His change, the variants, A1, B, C, F or G having a common amino acid histidine (His) at position 67 (-Tyr60- Pro61-Phe62-Pro63-Gly64-Pro65-Ile66-His67-), but variations at other positions of amino acids are called A1 type. Similarly, variants A2, A3, D, H1, H2 and I alleles having a common amino acid proline (Pro) at position 67 (-Tyr60-Pro61-Phe62-Pro63-Gly64-Pro65-Ile66-Pro67), but variations at other positions are categorized as A2 type.

## Bioactive Peptides from Beta Casein A1/A2 Variants

A1 and A2 variants of bovine  $\beta$ -casein, generally called A1/A2 milk differ at amino acid position 67 with histidine in A1variant/A1milk and proline in A2 variant/milk. This polymorphism leads to key conformational changes in the secondary structure of expressed  $\beta$ -casein protein. Because of the structural differences, the bioactive peptides generated upon digestion of A1/A2 beta casein are different. Gastrointestinal proteolytic digestion (leucine aminopeptidase, elastase and carboxypeptidase

Y) of A1 β-casein (raw/processed milk) releases a 7 amino acid bioactive peptide 'opioid' called beta-casomorphin 7 (BCM-7) (Fig 1) in small intestine, while proline in A2 β-casein at 67 position prevents the split at this particular site and generates nine amino acid peptide BCM-9 (Kostyra *et al.*, 2004; De Noni 2008). Release of BCM-7 from A2 β-casein is minimal under normal gut conditions. In hydrolysed milk with A1 beta-casein variant, BCM-7 level is 4-fold higher than in A2 milk. Further, BCM-7 is released not only from milk but also from almost all milk product including yoghurt and cheese, infant formulas

Beta-casomorphin suggest the peptide from beta casein with opiate properties similar to morphine, that includes affinity to opioid receptors, especially the MOP ( $\mu$ -opioid receptor). The beta-casomorphine-7 has been identified as the "atypical" opioid peptide and exerts its influence on nervous, digestive, and immune functions via the MOR. In addition to BCM7/9, digestion of beta casein results in the release of other encrypted casomorphins including the non-opioid peptides (BCM5, BCM11, Immunopeptides). The BCM-9 is also an opioid agonist but with lesser affinity for  $\mu$ -opioid receptor. The BCM-5, which is the more potent than BCM-7 and BCM-9,



Different genotypes for A1/A2 allele of β-casein

Fig. 1. Different variants of Beta-casein, their digestion and genotyping protocol

271 | 80

is primarily released from further proteolytic digestion of BCM-7 and BCM-9 by brush border peptidases. Various epidemiological, biochemical data or animal trials suggest the association of A1 milk (cow milk with A1 β-casein) as a risk factor for digestive discomforts, type I diabetes, coronary heart disease, arteriosclerosis, sudden infant death syndrome etc. (Kuellenberg *et al.*, 2022; Sodhi *et al.*, 2022; Yadav *et al.*, 2020; Brooke-Taylor *et al.*, 2017; Laugesen and Elliott, 2003; Tailford *et al.*, 2003)

# Status of **B**-casein Variants across Taurine Breeds

Although a clear link between A1  $\beta$ -case in and a disease state has not yet been confirmed, the importance of monitoring the status of A1/A2 alleles in dairy animals as a precautionary measure has been realized. The

distinguishing amino-acid sequence that characterizes A1 beta-casein is essentially unique to some European cattle breeds. Asian and African cattle; goats, sheep, yak and camel; all produce A2 milk. Human beta-casein is also of the A2 type as defined by the relevant amino-acid sequence (proline) fixation of A2 allele in buffalo breeds have also been reported in different studies (Mishra et al., 2009; Ramesha et al., 2016). Animals belonging to Genus Bos, which includes Bos Indicus (Indian humped Zebu), Bos taurus (Exotic) and Yak were initially of A2A2 type only but later due to point mutation A2 allele was replaced with A1 some 5000-10,000 years ago and some animals got A1A2 or A1A1 genotype (Ng-Kwai and Grosclaude, 2002). With the advent of selective breeding for high production, better fertility and protein quality, unconsciously, genetically superior bulls carrying

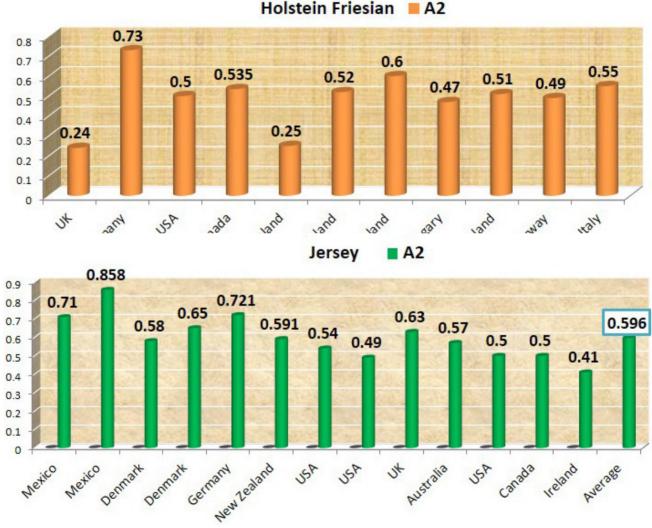



Fig. 2. Status of A1/A2 variant in Bos taurus breeds

A1 allele were used in breeding programs. Hence, A1 variant became prominent in European cattle some thousands of years ago while making selection for high milk production. The frequency of A1 beta-casein with A1 variant varies breed by breed. A1 β-casein is a major variant of  $\beta$  -casein in the milk of the common dairy cows of north European origin: Friesian, Ayrshire, British Shorthorn, and Holstein. Also, the frequency of A1 has increased over the last century as the Holstein Friesian (HF) has become predominant in many countries for its high milk production character. Artificial insemination of large number of cows with semen of HF bulls multiplied A1 gene frequency over time. Several reports indicate that A1/A2 frequency is breed as well as area specific. Frequency of A1 allele of beta casein is high in Holstein Friesen (HF) breed in North America but low in German HF. Overall, across countries frequency of Alallele in HF ranges between (40–65%). Compared to HF, frequency of A2 allele is higher in Jersey. Breeds like Guernsey, Kerry, Channel Island cows; Southern French breeds; Charolais and Limousin also have higher frequency of A2 allele compared to HF.

# **Indian Native Cattle Breeds: A Resource for A2 Allele**

Cattle genetic resources are the backbone of the farmer's economy since centuries producing milk as well as draught power. With 190.90 million cattle that is around 12.5% of world cattle population and producing 165.4 million tons of milk, India ranks first in the total milk produced annually (Livestock animalhusbandry-statistics, 2018). India is home to some of the best zebu (Bos indicus) breeds represented by 50 well-defined breeds. Besides these, many lesserknown cattle populations are also spread out in the length and breadth of the country each having its own special features contributing towards milk pool. The status of A1/A2 alleles of β-casein gene was delineated systematically first time at ICAR-NBAGR, Karnal in 2009, under the DBT funded project and later in National fund project. In a comprehensive analysis, nearly 4000 animals representing 27 breeds of Indian cattle and 231 animals from eight buffalo breeds have been genotyped to understand the distribution of A1/A2 variants. Blood samples were collected from the random, true to the breed animals by visiting the specific breeding tract of the breed. DNA was isolated and PCR-RFLP genotyping protocol was followed to ascertain the allelic status. The process included amplification of 251bp region of  $\beta$ -casein exon 7 harbouring the mutant site using specific primer pair restriction digestion of the PCR products with *Taq-I* restriction enzyme followed by visualization on 3% Ethidium bromide stained agarose gel. Three restriction fragments corresponding to different genotypes: A1A2 (251 & 213bp); A2A2 (251bp) and A1A1 (213bp) were observed for the analysed samples (Fig. 1).

The data on 15 Indian native cattle breeds (Mishra et al., 2009) from different agroclimatic regions and of different utility (milch, dual and draft purpose) revealed that majority of the Indian native cattle (97.4%) have A2A2, the desirable genotype, followed by heterozygous A1A2 (2.6%) genotype. None of the animal showed homozygous A1A1 genotype. Out of 861animals screened, only few animals of Malnad Gidda and Kherigarh cattle showed heterozygous A1A2 genotype with frequency of 0.191 and 0.218, respectively. The study was further extended to 3400 animals representing 27 Indian native cattle, crossbred (Karan Fries and Frieswal) and exotic (Holstein Frisian and Jersey) cattle (Mukesh et al., 2022). Across the Indian native cattle, highest frequency was observed for A2A2 genotype (0.905), followed by heterozygous A1A2 (0.091) and homozygous A1A1 (0.004) genotype. The overall frequency of favourable A2 allele across all the 2500 animals genotyped was 0.95 and its distribution across the different utility types was 1.0, 0.95 and 0.92 for milch, dual and draft purpose breeds, respectively. As observed by Mishra et al. (2009), all the animals belonging to dairy/milch breeds (Gir, Tharparkar, Rathi, Red Sindhi, and Sahiwal) showed only homozygous A2A2 genotype that is fixation of A2 allele. The other cattle breeds showing complete absence of A1A1/A1A2 genotype were Belahi, Konkan Kapila, Kangyam, Nimari, Red Kandhari, Malvi, Amritmahal, Kankrej, Hariana and Mewati (Table 1). The percent of heterozygous genotype was higher in draft purpose breeds compared to dual purpose breeds. Across the different climatic regions, breeds from arid and semiarid region showed higher frequency of A2 allele that is 0.98 and 1.00, respectively. Frequency of A2 allele in breeds from humid subtropical region mainly consisting of mainly draft and dual-purpose breeds was 0.90.

In line with data generated at ICAR-NBAGR, other researchers have also reported the complete absence of A1 allele in Kangayam (Malarmathi *et al.*, 2014, Kathiravan *et al.*, 2021), Amritmahal (Inamdar *et al.*, 2019); Gir



Table 1: Frequency profile of A1/A2 allele of beta casein and corresponding genotypes across Indian native, crossbred and taurine cattle in India

| Sir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | S No | Breed/ Population | Allelic Frequency |       | Genotypic Frequency |       |        | Sample No | References                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------------------|-------------------|-------|---------------------|-------|--------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |                   | A1                | A2    | A1A1                | A1A2  | A2A2   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1    | Gir               |                   |       |                     |       |        |           | Mukesh et al. 2022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Sahiwal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1    | GII               |                   |       | 0.000               | 0.000 |        | 24        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Gir Bulls                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                   |                   |       | 0.006               | 0.331 |        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Gir Bulls         0.222         0.778         0.037         0.370         0.593         54         Patel et al., 2019           2         Rathi         0.000         1.000         0.000         0.000         1.000         30         Saran et al., 2019           3         Red Sindhi         0.00         1.00         0.00         1.00         46         Mishra et al., 2022           4         Sahiwal         0.00         1.00         0.00         1.00         33         Mishra et al., 2009           4         Sahiwal         0.00         1.00         0.00         1.00         Mukesh et al., 2019           6.15         0.85         0.000         0.30         0.70         Pandey et al., 2019           6.067         0.933         0.005         0.124         0.871         26         Saran et al., 2019           6.066         0.94         0         0.13         0.87         306         Kumar et al., 2019           6.06         0.94         0         0.13         0.87         306         Kumar et al., 2019           7         Decentral         0.00         0.00         0.00         1.00         47         Mishra et al., 2019           8         Thurparkar <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |                   |                   |       |                     |       |        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Rathi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      | Gir Dulla         |                   |       |                     |       |        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Red Sindhi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      | Gli Bulis         | 0.222             | 0.778 | 0.037               | 0.570 | 0.595  | 34        | 1 atc1 et at., 2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Red Sindhi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2    | Rathi             | 0.000             | 1.000 | 0.000               | 0.000 | 1.000  |           | Mukesh et al., 2022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |                   | 0.000             | 1.000 | 0.000               | 0.000 | 1.000  | 30        | Saran et al.,2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Sahiwal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |                   | 0.000             | 1.000 | 0.000               | 0.000 | 1.000  | 46        | Mishra et al., 2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Sahiwal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3    | Red Sindhi        | 0.00              | 1.00  | 0.00                | 0.00  | 1.00   |           | Mukesh et al., 2022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |                   | 0.000             | 1.000 | 0.000               | 0.000 | 1.000  | 33        | Mishra et al., 2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4    | Sahiwal           | 0.00              | 1.00  | 0.00                | 0.00  | 1.00   |           | Mukesh et al., 2022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |                   | 0.15              | 0.85  | 0.000               | 0.30  | 0.70   |           | Pandey et al., 2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |                   |                   |       |                     |       |        | 26        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Note                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |                   |                   |       |                     |       |        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Second   S |      |                   |                   |       |                     |       |        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Note                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |                   |                   |       |                     |       |        |           | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5         Tharparkar         0.00         1.00         0.00         1.00         0.00         1.00         Mukesh et al., 2012           6         0.000         1.000         0.000         0.000         1.000         30         Saran et al., 2019           6         Badri         0.000         1.000         0.000         1.000         0.000         1.000         44         Mishar et al., 2019           7         Belahi         0.00         1.000         0.000         0.000         1.000         Mukesh et al., 2022           8         Deoni         0.08         0.92         -         -         -         Mukesh et al., 2022           8         Deoni         0.08         0.92         -         -         -         Mukesh et al., 2022           8         Deoni         0.00         0.000         0.000         0.000         0.000         Mukesh et al., 2022           8         Deoni         0.00         0.000         0.000         0.000         0.000         0.000         Mukesh et al., 2022           9         Gaolao         0.08         0.92         -         -         -         Mukesh et al., 2019           9         Gaolao         0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |                   |                   |       |                     |       |        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Note                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5    | Tharnarkar        |                   |       |                     |       |        | .,        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5    | тпаграгкаг        |                   |       |                     |       |        | 30        | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Badri   0.000   1.000   0.000   0.000   1.000   44   Mishra et al., 2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |                   |                   |       |                     |       |        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6         Badri         0.09         0.91         -         -         -         Mukesh et al., 2022           7         Belahi         0.000         1.000         0.000         1.000         Mukesh et al., 2019           8         Deoni         0.08         0.92         -         -         -         Mukesh et al., 2022           8         Deoni         0.08         0.92         -         -         -         Mukesh et al., 2022           9         Gaolao         1.000         0.000         0.000         1.000         40         Ramesha et al., 2016           9         Gaolao         0.08         0.92         -         -         -         Mukesh et al., 2022           10         Hariana         0.000         1.000         0.000         1.000         Mukesh et al., 2022           11         Kankrej         0.000         1.000         0.000         0.000         1.000         Mukesh et al., 2022           11         Kankrej         0.000         1.000         0.000         0.000         1.000         Mukesh et al., 2022           0.03         0.917         -         -         -         24         Patel et al., 2019           0.000 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1 '</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |                   |                   |       |                     |       |        |           | 1 '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Deni                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6    | Do dui            |                   |       |                     | 0.000 | 1.000  | 44        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | O    | Dauri             |                   |       |                     | 0.24  | 0.76   | 00        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8       Deoni       0.08       0.92       -       -       -       Mukesh et al., 2022         0.29       0.71       0       0.58       0.42       12       Srinivas et al., 2019         9       Gaolao       0.08       0.92       -       -       -       Mukesh et al., 2016         9       Gaolao       0.08       0.92       -       -       -       Mukesh et al., 2022         10       Hariana       0.000       1.000       0.000       1.000       Mukesh et al., 2022         11       Kankrej       0.000       1.000       0.000       0.000       1.000       Mukesh et al., 2029         11       Kankrej       0.000       1.000       0.000       1.000       Mukesh et al., 2022         0.083       0.917       -       -       -       24       Patel et al., 2020         0.107       0.893       0.000       0.214       0.786       28       Patel et al., 2019         0.00       1.000       0.000       0.000       1.000       30       Saran et al., 2019         Kankrej Bulls       0.067       0.933       0.000       0.154       0.867       60       Patel et al., 2019         12       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7    | D.1-1.:           |                   |       |                     |       |        | 90        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| D.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |                   |                   |       |                     | 0.000 | 1.000  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.000   1.000   0.000   0.000   1.000   40   Ramesha et al., 2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8    | Deoni             |                   |       |                     | 0.50  | - 0.42 | 10        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 9 Gaolao 0.08 0.92 Mukesh et al., 2022 10 Hariana 0.000 1.000 0.000 0.000 1.000 Mukesh et al., 2022 11 Kankrej 0.000 1.000 0.000 0.000 1.000 Mukesh et al., 2029 11 Kankrej 0.000 1.000 0.000 0.000 1.000 Mukesh et al., 2020 11 Kankrej 0.083 0.917 24 Patel et al., 2020 11 0.083 0.917 24 Patel et al., 2020 11 0.000 1.000 0.000 0.000 1.000 30 Saran et al., 2019 12 0.03 0.97 Rangel et al., 2019 13 Cankrej Bulls 0.067 0.933 0.000 0.154 0.867 60 Patel et al., 2019 14 Konkan Kapila 0.00 1.00 0.00 0.00 1.00 Mukesh et al., 2022 15 Ladakhi 0.08 0.92 Mukesh et al., 2022 16 0.100 0.900 0.000 0.210 0.790 82 Sodhi et al., 2018 17 Malnad Gidda 0.07 0.93 Mukesh et al., 2022 18 Malnad Gidda 0.07 0.93 Mukesh et al., 2018 18 Malnad Gidda 0.07 0.93 Mukesh et al., 2022 19 0.000 1.000 0.000 0.000 1.000 6 Sridharan et al., 2022 19 0.000 1.000 0.000 0.000 1.000 6 Sridharan et al., 2022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |                   |                   |       |                     |       |        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Hariana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0    | G 1               |                   |       | 0.000               | 0.000 | 1.000  | 40        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Name    |      |                   |                   |       | -                   | -     | -      |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Kankrej                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10   | Hariana           |                   |       |                     |       |        | 40        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.083   0.917   -   -   -   24   Patel et al., 2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |                   |                   |       |                     |       |        | 48        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| D.107   D.893   D.000   D.214   D.786   D.78 | 11   | Kankrej           |                   |       | 0.000               | 0.000 | 1.000  |           | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.000   1.000   0.000   0.000   1.000   30   Saran et al., 2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |                   |                   |       | -                   | -     | -      |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Rangel et al., 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |                   |                   |       |                     |       |        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |                   |                   |       | 0.000               | 0.000 | 1.000  | 30        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Kankrej Bulls                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                   |                   |       |                     |       |        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 12         Konkan Kapila         0.00         1.00         0.00         1.00         Mukesh et al., 2022           13         Ladakhi         0.08         0.92         -         -         -         Mukesh et al., 2022           0.100         0.900         0.000         0.210         0.790         82         Sodhi et al., 2018           14         Malnad Gidda         0.07         0.93         -         -         -         Mukesh et al., 2022           0.000         1.000         0.000         0.000         1.000         6         Sridharan et al., 2022           0.20         0.80         0         0.40         0.60         10         Srinivas et al., 2019           0.014         0.986         0.000         0.029         0.971         104         Ramesha et al., 2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |                   |                   |       |                     |       |        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 13     Ladakhi     0.08     0.92     -     -     -     Mukesh et al., 2022       0.100     0.900     0.000     0.210     0.790     82     Sodhi et al., 2018       14     Malnad Gidda     0.07     0.93     -     -     -     Mukesh et al., 2022       0.000     1.000     0.000     0.000     1.000     6     Sridharan et al., 2022       0.20     0.80     0     0.40     0.60     10     Srinivas et al., 2019       0.014     0.986     0.000     0.029     0.971     104     Ramesha et al., 2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                   |                   |       |                     |       |        | 60        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.100 0.900 0.000 0.210 0.790 82 Sodhi et al., 2018  14 Malnad Gidda 0.07 0.93 Mukesh et al., 2022  0.000 1.000 0.000 0.000 1.000 6 Sridharan et al., 2022  0.20 0.80 0 0.40 0.60 10 Srinivas et al., 2019  0.014 0.986 0.000 0.029 0.971 104 Ramesha et al., 2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |                   |                   |       | 0.00                | 0.00  | 1.00   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Malnad Gidda     0.07     0.93     -     -     -     Mukesh et al., 2022       0.000     1.000     0.000     0.000     1.000     6     Sridharan et al., 2022       0.20     0.80     0     0.40     0.60     10     Srinivas et al., 2019       0.014     0.986     0.000     0.029     0.971     104     Ramesha et al., 2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13   | Ladakhi           |                   |       | -                   | -     | -      |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.000     1.000     0.000     1.000     6     Sridharan et al., 2022       0.20     0.80     0     0.40     0.60     10     Srinivas et al., 2019       0.014     0.986     0.000     0.029     0.971     104     Ramesha et al., 2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |                   | 0.100             | 0.900 | 0.000               | 0.210 | 0.790  | 82        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.20         0.80         0         0.40         0.60         10         Srinivas et al., 2019           0.014         0.986         0.000         0.029         0.971         104         Ramesha et al., 2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14   | Malnad Gidda      | 0.07              | 0.93  | -                   | -     | -      |           | , and the second |
| 0.014 0.986 0.000 0.029 0.971 104 Ramesha <i>et al.</i> , 2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |                   | 0.000             | 1.000 | 0.000               | 0.000 | 1.000  | 6         | Sridharan et al., 2022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |                   | 0.20              | 0.80  | 0                   | 0.40  | 0.60   | 10        | Srinivas et al., 2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.096 0.904 0 0.191 0.809 Malarmathi et al. 2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |                   | 0.014             | 0.986 | 0.000               | 0.029 | 0.971  | 104       | Ramesha et al., 2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |                   | 0.096             | 0.904 | 0                   | 0.191 | 0.809  |           | Malarmathi et al., 2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0.21 0.79 0.13 0.18 0.69 Navyashree, 2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                   | 0.21              | 0.79  | 0.13                | 0.18  | 0.69   |           | Navyashree, 2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.096 0.904 0 0.191 0.809 47 Mishra <i>et al.</i> , 2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |                   | 0.096             | 0.904 | 0                   | 0.191 | 0.809  | 47        | Mishra et al., 2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |





| S No    | Breed/ Population    | Allelic Frequency |               | Genotypic Frequency |         |               | Sample No | References                                                 |
|---------|----------------------|-------------------|---------------|---------------------|---------|---------------|-----------|------------------------------------------------------------|
|         |                      | A1                | A2            | A1A1                | A1A2    | A2A2          |           |                                                            |
| 15      | Mewati               | 0.000             | 1.000         | 0.000               | 0.000   | 1.000         |           | Mukesh et al., 2022                                        |
|         | 1110 11 1111         | 0.000             | 1.000         | 0.000               | 0.000   | 1.000         | 40        | Mishra <i>et al.</i> , 2009                                |
| 16      | Ongole               | 0.020             | 0.980         | 0.000               | 0.019   | 0.981         | .0        | Mukesh et al., 2022                                        |
| 10      | ongoic               | 0.040             | 0.96          | 0.000               | 0.080   | 0.92          | 12        | Srinivas et al., 2019                                      |
|         |                      | 0.06              | 0.94          | 0                   | 0.11    | 0.89          | 38        | Ganguly et al., 2013                                       |
| Draft ( | attle Breeds         | 0.00              | 0.54          | O .                 | 0.11    | 0.07          | 30        | Guilgury Ci ui., 2015                                      |
| 17      | Amritmahal           | 0.000             | 1.000         | 0.000               | 0.000   | 1.000         |           | Mukesh et al., 2022                                        |
| 1,      | 7 IIII IIII IIII III | 0.000             | 1.000         | 0.000               | 0.000   | 1.000         | 5         | Sridharan et al., 2022                                     |
|         |                      | 0.000             | 1.000         | 0.000               | 0.000   | 1.000         | 50        | Inamdar <i>et al.</i> , 2019                               |
|         |                      | 0.000             | 1.000         | 0.000               | 0.000   | 1.000         | 37        | Mishra <i>et al.</i> , 2009                                |
| 18      | Bargur               | 0.063             | 0.937         | 0.00                | 0.125   | 0.875         | 48        | Raja <i>et al.</i> , 2021                                  |
| 19      | Dangi                | 0.003             | 0.86          | -                   | 0.125   | 0.075         | 70        | Mukesh <i>et al.</i> , 2022                                |
| 19      | Dangi                | 0.000             | 1.000         | 0.000               | 0.000   | 1.000         | 31        | Jawane <i>et al.</i> , 2018                                |
| 20      | Kangayam             | 0.000             | 1.000         | 0.000               | 0.000   | 1.000         | 31        | Mukesh <i>et al.</i> , 2022                                |
| 20      | Kangayam             | 0.000             | 1.000         | 0.000               | 0.000   | 1.000         |           | Kathiravan <i>et al.</i> , 2021                            |
|         |                      |                   |               |                     |         |               | 22        | · ·                                                        |
|         |                      | 0.000             | 1.000         | 0.000               | 0.000   | 1.000         | 22        | Malamathi et al., 2014                                     |
| 21      | 171 ' 1              | 0.000             | 1.000         | 0.000               | 0.000   | 1.000         | 48        | Mishra et al., 2009                                        |
| 21      | Kherigarh            | 0.00              | 0.89          | -                   | - 0.210 | 0.702         | 22        | Mukesh <i>et al.</i> , 2022                                |
|         | Y71 '11              | 0.109             | 0.891         | 0                   | 0.218   | 0.783         | 23        | Mishra et al., 2009                                        |
| 22      | Khillar              | 0.14              | 0.86          | -                   | -       | -             |           | Mukesh et al., 2022                                        |
|         |                      | 0.000             | 1.000         | 0.000               | 0.000   | 1.000         | 12        | Ramesha et al., 2016                                       |
| 23      | Malvi                | 0.00              | 1.00          | 0.00                | 0.00    | 1.00          |           | Mukesh et al., 2022                                        |
|         |                      | 0.000             | 1.000         | 0.000               | 0.000   | 1.000         | 44        | Mishra et al., 2009                                        |
| 24      | Nagori               | 0.06              | 0.94          | -                   | -       | -             |           | Mukesh et al., 2022                                        |
| 25      | Nimari               | 0.00              | 1.00          | 0.00                | 0.00    | 1.00          |           | Mukesh et al., 2022                                        |
|         |                      | 0.000             | 1.000         | 0.000               | 0.000   | 1.000         |           | Mishra et al., 2009                                        |
| 26      | Punganur             | 0.000             | 1.000         | 0.000               | 0.000   | 1.000         | 3         | Sridharan et al., 2022                                     |
|         |                      | 0.080             | 0.92          | 0                   | 0.17    | 0.83          | 12        | Srinivas et al., 2019                                      |
| 27      | Ponwar               | 0.13              | 0.87          | -                   | -       | -             |           | Mukesh et al., 2022                                        |
| 28      | Red Kandhari         | 0.00              | 1.00<br>1.000 | 0.00                | 0.00    | 1.00<br>1.000 | 39        | Mukesh <i>et al.</i> , 2022<br>Mishra <i>et al.</i> , 2009 |
|         |                      | 0.000             |               |                     |         |               |           |                                                            |
| 29      | Umblachery           | 0.20              | 0.80          | -                   | -       | -             |           | Mukesh et al., 2022                                        |
|         |                      | 0.02              | 0.98          | 0.000               | 0.050   | 0.950         | 42        | Raja et al., 2021                                          |
| 30      | Vechur               | 0.20              | 0.80          | -                   | -       | -             |           | Muhammed and Stephen, 2012                                 |
|         | Kasargod local       | 0.39              | 0.61          | -                   | -       | -             |           |                                                            |
|         |                      | 0.042             | 0.958         | 0.000               | 0.083   | 0.917         | 48        | Ramesha et al., 2016                                       |
|         | ed Cattle            |                   |               |                     |         |               |           |                                                            |
| 31      | Karan fries          | 0.29              | 0.71          | 0.09                | 0.40    | 0.51          | 460       | Mukesh et al., 2022                                        |
|         |                      | 0.169             | 0.831         | 0.000               | 0.338   | 0.662         | 59        | Ramesha et al., 2016                                       |
|         |                      | 17.5              | 82.5          | 0.08                | 0.19    | 0.73          | 73        | Jaiswal K et al., 2013                                     |
|         |                      | 0.208             | 0.792         | 0.125               | 0.166   | 0.709         | 24        | Haq et al., 2012                                           |
| 32      | Frieswal             |                   |               |                     |         |               |           |                                                            |
|         | Heifers              | 0.32              | 0.67          | 0.12                | 0.40    | 0.48          | 124       | Ganguly et al., 2013                                       |
|         | Bulls                | 0.44              | 0.56          | 0.23                | 0.42    | 0.35          | 48        |                                                            |
|         | Mean                 | 0.37              | 0.63          | 0.17                | 0.39    | 0.44          | 100       |                                                            |
| 33      | Vrindvani            | 0.35              | 0.65          | 0.11                | 0.47    | 0.42          | 354       | Kumar et al., 2018                                         |



| S No    | Breed/ Population | Allelic Frequency |       | Geno  | typic Freque | ency  | Sample No | References              |
|---------|-------------------|-------------------|-------|-------|--------------|-------|-----------|-------------------------|
|         |                   | A1                | A2    | A1A1  | A1A2         | A2A2  |           |                         |
| 34      | Hardhenu          | 0.66              | 0.34  | 0.32  | 0.68         | 0.00  | 50        | Ramkaran et al., 2017   |
| 35      | HF cross          | 0.64              | 0.36  | 0.29  | 0.71         | 0.00  | 14        | Kathiravan et al., 2021 |
|         |                   | 0.479             | 0.521 | -     | -            | -     | 24        | Patel et al., 2020      |
|         |                   | 0.375             | 0.625 | 0.091 | 0.567        | 0.342 | 263       | Patel et al., 2019      |
|         |                   | 0.50              | 0.50  | 0     | 1.0          | 0     | 12        | Srinivas et al., 2019   |
|         |                   | 0.638             | 0.362 | 0.28  | 0.72         | 0.00  | 47        | Shende et al., 2017     |
|         |                   | 0.294             | 0.706 | 0.000 | 0.588        | 0.412 | 17        | Ramesha et al., 2016    |
|         | Rathi X HF        | 0.000             | 1.000 | 0.000 | 0.000        | 1.000 | 10        | Saran et al., 2019      |
|         | Sahiwal X HF      | 0.32              | 0.68  | 0.00  | 0.64         | 0.36  | 50        | Pandey et al., 2019     |
|         | Dangi X HF        |                   |       |       |              |       |           |                         |
|         | HF 75 %           | 0.13              | 0.86  | 0.06  | 0.13         | 0.81  | 15        | Jawane et al., 2018     |
|         | HF 62.5 %         | 0.03              | 0.97  | 0.000 | 0.06         | 0.94  | 17        |                         |
|         | Overall           | 0.08              | 0.92  | 0.03  | 0.09         | 0.88  | 32        |                         |
|         | Kangayem X HF     | 0.405             | 0.595 | 0.17  | 0.46         | 0.37  | 63        | Malamathi et al.,, 2014 |
| 36      | Jersey Cross      | 0.69              | 0.31  | 0.380 | 0.620        | 0.000 | 29        | Kathiravan et al., 2021 |
| 37      | Breeding Bulls    |                   |       |       |              |       |           | Sodhi et al., 2012      |
|         | Holstein          | 0.441             | 0.559 | 0.216 | 0.451        | 0.333 | 51        |                         |
|         | Jersey            | 0.325             | 0.675 | 0.025 | 0.600        | 0.375 | 40        |                         |
|         | Crossbred         | 0.298             | 0.702 | 0.101 | 0.393        | 0.506 | 89        |                         |
|         | Mean              | 0.355             | 0.645 | 0.114 | 0.481        | 0.405 |           |                         |
| Taurine | breeds            |                   |       |       |              |       |           |                         |
| 38      | Holstein Friesian |                   |       |       |              |       |           |                         |
|         |                   | 0.500             | 0.500 | 0.000 | 1.000        | 0.000 | 2         | Kathiravan et al., 2021 |
|         |                   | 0.565             | 0.435 |       |              |       | 23        | Patel et al., 2020      |
|         |                   | 0.169             | 0.831 | 0.000 | 0.338        | 0.662 | 59        | Ramesha et al., 2016    |
| 39      | Jersey            | 0.077             |       |       |              |       |           | Ramesha et al., 2016    |
|         |                   | 0.25              | 0.75  | 0.000 | 0.50         | 0.50  |           | Kathiravan et al., 2021 |
| 40      | Karan Swiss       | 0.107             | 0.893 | 0.00  | 0.214        | 0.786 | 14        | Haq et al., 2012        |

(Paradkar *et al.*, 2021); Malvi & Nimari (Pandey *et al.*, 2021) cattle; and predominance (≥ 0.90) of the A2 allele in Indian native cattle breeds including Kankrej-0.97; Malnad Gidda-0.98; Ongole-0.94; Umblachery-0.98; Kasargod-0.958; Bargur-0.937, Umblachery-0.98 and Ladakhi-0.90 (Table 1). The variations in the frequency of A2 allele was mainly due to the small sample size or collection of samples from the organized herds/farms, for instance frequency of A1 allele in Sahiwal cattle maintained in organized farm was 0.15 (Pandey *et al.*, 2021). Complete absence of A1 allele has also been reported for Deoni, Khillar (Ramesha *et al.*, 2016) and Dangi (Jawane *et al.*, 2018) cattle. Overall, the findings indicate the preponderance of A2 β-casein variant and also pointed towards the indicine origin of A2 allele.

### Status of \( \beta\)-casein Variants in Crossbred Cattle

India continues to be the largest milk producing country in the world. Population statistics indicate approximately 51% of the Indian cattle population consist of registered/recognized indicus breeds, crossbred cattle constitute only 13%, while others are nondescript cattle. However, in terms of milk production, crossbred cattle and Indicus breeds contribute 24.4 and 20.7 percent respectively to the national milk pool. Considering the contribution of crossbred cattle towards milk produced, it is important to genotype the crossbred population in the country for the status of A1/A2 allele of beta casein. Karan Fries, one of the crossbred populations developed using Holstein Friesian (exotic breed) and Tharparkar (indigenous breed) with the aim to enhance milk production coupled



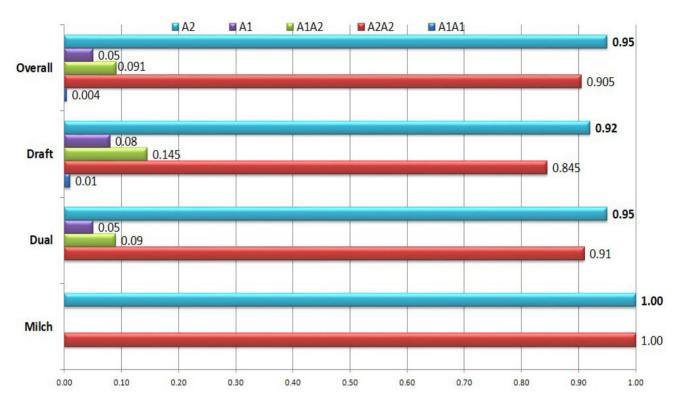



Fig. 3. Overall and utility wise status of  $\beta$ -case in A1/A2 alleles and genotypes in Indian cattle

with high disease resistance and adaptability to local conditions; Frieswal (cross of Holstein Friesian and Sahiwal); Hardhenu and other crossbred cattle available across the country have been genotyped by different researchers (Table 1). Genotyping of 686 crossbred animals (Karan Fries and Frieswal) by Mukesh et al. (2022) revealed the predominance of A2 allele with a frequency of 0.71. Though the observed frequency of A1 allele (0.29) was much higher compared to Indian native cattle, the contribution towards A1 allele was majorly from the heterozygous A1A2 genotype rather than homozygous A1A1. Frequencies of the three genotypes A1A1, A1A2 and A2A2 was 0.09, 0.40 and 0.51 respectively. Similar allelic and genotypic profile (A1-0.32; A2-0.67; A1A1-0.12; A1A2-0.40; A2A2-0.48) with high frequency of A1A2 genotype was observed by Ganguly et al. (2019) while genotyping 124 Frieswal heifers. Frequency for A2 allele in HF crossbred cow was observed to be 0.595 (Malarmathi et al., 2014) while in Vrindavani (crossbred cattle) frequency of 0.65 has been recorded for A2 alleles. Most of the studies pointed towards higher frequency of A2 allele even in Indian crossbred populations except for HF crossbred (A2-0.31) as well as Jersey crossbred (A2-0.36) in Tamil Nadu

(Kathiravan *et al.*, 2021), Hardhenu crossbred cattle of Haryana region (0.34: Ramkaran *et al.*, 2017), and HF crossbred of Maharashtra (0.36: Shende *et al.*, 2017).

### Status of A1/A2 \(\beta\)-casein Variants in Breeding Bulls

In India, Holstein Friesian (HF) and Jersey cattle have been extensively used since 1960 for crossbreeding and genetic improvement programme. Considering the widespread use of taurine germplasm in our country's cross-breeding program and fact that these cattle could be the potential source for undesirable A1 allele, it is essential to ensure the status of A1/A2 alleles in breeding bulls being used at different AI centres. Frequency profiling of A1/A allele and corresponding genotypes in crossbred, taurine (Holstein Frisian and Jersey) and Indicus bulls being used in different AI centres was reported by Sodhi et al. (2012). As per the report, frequency of A2 allele was 0.88 in Indicus bulls, 0.702 in cross-bred bulls, while in Jersey and Holstein Frisian bulls, it was 0.675 and 0.559 respectively. Among the frequencies for three genotypes across taurine and crossbred bulls, least observed frequency was of homozygous A1A1 genotype (0.114) followed by A2A2 (0.405) while maximum frequency of 0.481 was observed for heterozygous A1A2 genotype. Congruently, the mean

277 | 80

frequencies of A1 and A2 alleles was 0.355 and 0.645 respectively (Fig. 3). Similar values of highest mean frequency of A1A2 genotype (0.475) and least mean frequency for A1A1 genotype (0.095) for semen samples from different breeding bulls have also been reported by Mukesh *et al.* (2022). Across different categories of breeding bulls, the frequency of A1A2 genotype was higher in Jersey (0.64) and HF bulls (0.449) in comparison to crossbred (0.39) and indigenous bulls (0.24) while trend of frequency of A2 allele was highest in indicus (0.88) followed by crossbred (0.70), Jersey (0.64) and HF bulls (0.56).

Kathiravan *et al.* (2021) also reported higher percentage of heterozygous genotypes for Jersey (0.50), HF (1.0), Jersey crossbred (0.62) and HF crossbred (0.71) bulls. Though, the data indicated predominance of the desirable A2 allele across all studied breeding bulls, still there is a need for careful screening of sire lines being used in the breeding programmes as 65-70% of exotic

(JSC and HF) or crossbred bulls being currently used in AI program in India are source of A1 allele.

The presence of large crossbred cattle populations and higher proportions of the A1 allele in exotic animals necessitates careful screening of animals and fine-tuning of existing breeding programmes. Such an approach would be an effective measure to prevent the dissemination of the undesirable A1 allele in our existing A2-predominant indigenous cattle populations. Initially, information regarding the screening of bulls for the A1A2 genotype in government semen stations was not available. But in recent years, many of the AI centres have availed the genotype testing facility at ICAR-NBAGR and got the bulls (semen straws) certified as A2 bulls. Specific herds can be converted to A2 type by selective breeding within 4 years using intensive methods of animal selection that incorporate the use of certified A2 semen to eliminate all A1 betacasein from the milk (Pal et al., 2015).

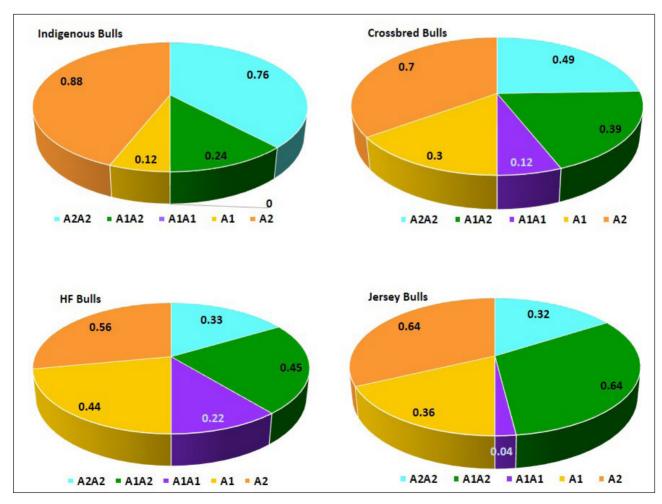



Fig. 4. Overall Status of A1/A2 variants in breeding bulls



### Conclusion

The A1/A2 hypothesis is both intriguing and potentially very important for public health, if it is proved correct. The BCM-7 released from A1 type has been the central theme for hypothesis, whereas the BCM-9 released from A2 type milk need be investigated for the claimed health ailments. The epidemiological data and animal trials point towards potential health hazards of consuming A1 type milk or derived BCM-7 while A2 milk is considered safe for drinking. Work is in progress in different labs across globe to authenticate the fact. Till that time, it is essentially important to monitoring the status of A1/ A2 alleles in dairy animals as a precautionary measure. The studies conducted on Indian native cattle strongly demonstrate that Indian cattle naturally harbor the preferred A2 allele and thus are a good resource for A2 milk. Further, though, the frequency of A1 allele is high in crossbred cattle and breeding bulls, its A1A2 genotype mainly contributing for this high A1 allele frequency. The overall frequency of homozygous A1A1 genotype is very low across all the categories of animals that is Indian breeds, taurine or crossbred populations, as well as breeding bulls. Hence, allelic profiling for A1/A2 beta casein in breeding bulls and bringing in changes in the breeding program accordingly can very easily help to drift the herds towards A2 and minimize the risk of disseminating the A1 allele in Indian cattle.

### **Suggested Readings**

- Brooke-Taylor S, K Dwyer, K Woodford and N Kost (2017) Systematic review of the gastrointestinal effects of A1 compared with A2 β-Casein. *Adv Nutr Bethesda Md.* 8: 739–748. doi: 10.3945/an.116.013953.
- De Noni I (2008) Release of  $\beta$ -casemorphins 5 and 7 during simulated gastro-intestinal digestion of bovine  $\beta$ -casein variants and milk-based infant formulas. *Food Chem.* **110**: 897–903. doi: 10.1016/j.foodchem.2008.02.077.
- Kaminski S, A Cieslinska and E Kostyra (2007) Polymorphism of bovine β-casein and its potential effect on human health. *J. Appl. Genet.* **48**: 189–198. doi: 10.1007/BF03195213.
- Kuellenberg de Gaudry D, S Lohner, K Bischoff, C Schmucker, S Hoerrlein, C Roeger, L Schwingshackl and JJ Meerpohl

- (2022) A1- and A2 beta-casein on health-related outcomes: a scoping review of animal studies. *Eur J Nutr.* **61**(1): 1-21. doi: 10.1007/s00394-021-02551-x. Epub 2021 Jun 1. PMID: 34075432; PMCID: PMC8783860.
- Kullenberg de Gaudry D, S Lohner, C Schmucker et al. (2019) Milk A1 beta-casein and health-related outcomes in humans: a systematic review. Nutr Rev. doi: 10.1093/nutrit/nuy063.
- Mencarini IR, KB Woodford and KM Old (2013) Comparing herd selection strategies for A2 beta-casein. *Proc. N. Z. Soc. Anim. Prod.* **73**: 149–154.
- Mishra BP, M Mukesh, B Prakash, M Sodhi, R Kapila, A Kishore, RS Kataria, BK Joshi, V Bhasin, TJ Rasool and KM Bujarbaruah (2009) Status of milk protein, b-casein variants among Indian milch animals. *Indian J Anim Sci* 79: 722–725
- Mukesh M, S Swami, G Bhakhri, Vipul Chaudhary, V Sharma, N Goyal, P Vivek, V Dalal, AK Mohanty, RS Kataria, P Kumari, SK Niranjan and M Sodhi (2022) Demographic pattern of A1/A2 beta casein variants indicates conservation of A2 type haplotype across native cattle breeds (*Bos indicus*) of India. *Biotech* 12(3):, 167. https://doi.org/10.1007/s13205-022-03232-0
- Ng-Kwai-Hang KF and F Grosclaude (2002) Genetic polymorphism of milk proteins. In: Fox PF, PLH McSweeney (eds). Advanced Dairy Chemistry: Volume 1: Proteins, Parts A & B. Kluwer Academic/Plenum Publishers; New York, NY, USA. pp. 739–816.
- Pal S, K Woodford, S Kukuljan and S Ho. Milk Intolerance, Beta-Casein and Lactose. Nutrients. 2015 Aug 31; 7(9): 7285-97. doi: 10.3390/nu7095339.
- Phelan, Martha *et al.* (2009) "Casein-derived bioactive peptides: biological effects, industrial uses, safety aspects and regulatory status." *International Dairy Journal* **19**: 643-654.
- Sodhi M, M Mukesh, BP Mishra, A Kishore, B Prakash, R Kapil, K Khate, RS Kataria and BK Joshi (2012b) Screening of taurine and crossbred breeding bulls for A1/A2 variants of β-casein gene. *Indian J Anim Sci* **82**: 2–9
- Sodhi M, M Mukesh, V Sharma, RS Kataria and R Sobti (2022) Harnessing potential of A2 milk in India: an overview. Book chapter in *Advances in Animal Experimentation and Modeling* DOI:10.1016/b978-0-323-90583-1.00016-7. Corpus ID: 245063397
- Yadav S, NDS Yadav, A Gheware *et al.* (2020) Oral Feeding of Cow Milk Containing A1 Variant of β Casein Induces Pulmonary Inflammation in Male Balb/c Mice. *Sci* Rep **10**: 8053. https://doi.org/10.1038/s41598-020-64997-z